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Abstract This work reports an extension of the recent study on changes of electronic
structures in systems possessing nuclei with fractional charges (Cohen and Mori-
Sánchez in J Chem Phys 140:044110, 2014). Using the simple Hückel framework we
show that the introduction of fractional charges in molecular systems causes a sym-
metry breaking which leads to strong changes in the electronic densities respect to
their counterpart conventional systems with integer nuclear charges. Numerical deter-
minations in simple one- and two-electron systems within this model are qualitatively
compared with the results arising from the full configuration interaction method. The
described procedure allows to study ground and excited states as well as the dissoci-
ation products when the bond lengths of the molecules are stretched.
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1 Introduction

The formulation of electronic Hamiltonians to describe molecular systems whose
nuclei possess electric charges quantified by rational numbers instead of integers has
proved useful to tackle the study of interesting problems in quantum chemistry and
molecular mechanics. It provides a more classical interpretation of some aspects of
quantum chemistry removing the quantization of nuclear charges. The finite-size scal-
ing applied to the Schrödinger equation, the molecular grand-canonical theory, the
design of molecules for target properties, the understanding and error reduction in den-
sity functional calculations, etc, are paradigmatic examples of studies which involve
fractional nuclear charges in the electronic Hamiltonians [1–16]. This extended for-
mulation provides changes in the electronic external potential but it does not alter the
nature of the Schrödinger equation of the molecular system and consequently any elec-
tronic description can be applied to this new approach. In Ref. [17] it has recently been
reported that dramatic changes occur in the electron density of one- and two-electron
molecules when the nuclear configuration is modified. Such remarkable effects appear
when some nuclear charges are formulated by fractional numbers and the molecular
geometry is greatly stretched. Some of those effects have been interpreted as transfer,
hopping and removal of electrons by means of numerical determinations performed at
configuration interaction (FCI) levels. However, these effects are not longer exhibited
when other treatments are used for describing the system. In the case of the simple H+

2
molecule, the symmetry breaking observed in the large dimensional limit has been
suggested as a possible cause which might explain the appearance of these effects
[17].

The main purpose of this report is to implement a further discussion and clari-
fication of the changes in the electron density of such simple molecular systems. In
order to achieve this purpose, we have formulated the Hamiltonian matrices within the
Hückel model. The framework of this model turns out particularly suitable to analyze
in a simple way the influence of the symmetry breaking caused by the presence of
fractional nuclear charges. The results have been compared with those provided by
the FCI method, showing that both procedures lead to similar qualitative predictions
for the ground state and for the excited ones. This behavior guarantees the reliabil-
ity of our proposal to predict dissociation products in stretched molecules. Another
purpose of this work is to indicate that the presence of atomic nuclei with fractional
charges in electronic Hamiltonians is a natural consequence when those operators are
reformulated within scaling methods.

This work has been organized as follows. The second section describes the quantum-
mechanical effects that can be ascribed to the symmetry breaking in the case of one-
electron two- and three-center systems, by means of the well-known Hückel approx-
imation. In the third section we perform a detailed analysis of energies, electronic
densities and dissociation products in one- and two-electron systems, highlighting the
role played by the fractional nuclear charges. The section four reports the relationship
between the coordinate scaling and the fractional charges. Finally, in the last section
we summarize the main conclusions of this work.
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2 The symmetry breaking

We will refer to the one-electron linear molecules HZ(1e) and HZH(1e), where Z denotes
the charge of one of the protons, which is allowed to be non-integer. In order to reduce
the discussion to the symmetry aspects of these systems we resort to the well known
Hückel approximation [18]. For example, for the molecule HZ(1e) we choose the
Hamiltonian matrix

H(ξ, b) =
(−1 −b

−b −1 + ξ

)
(1)

where ξ accounts for the deviation from the integer charge on one of the atoms and
b ≥ 0. The eigenvalues ei and eigenvectors vi of the symmetric case H(0, b) are given
by

e1 = −1 − b, v1 = 1√
2

(
1
1

)

e2 = −1 + b, v2 = 1√
2

(
1

−1

)
(2)

for all values of b. This Hamiltonian is invariant with respect to the unitary transfor-
mation

U =
(

0 1
1 0

)
(3)

UH(0, b)U = H(0, b) (U† = U−1 = U). It represents either the inversion operation i
or a rotation C2 of the D∞h point group that one customarily chooses to describe the
symmetry of a homonuclear diatomic molecule. Since the models discussed in this
section are extremely simple, any of these two symmetry elements is sufficient for the
description. The vectors (2) are also eigenvectors of U and the symmetry is unbroken
for all values of b including b → 0, which in this oversimplified model is equivalent
to internuclear distances RHZ → ∞.

On the other hand, the eigenvalues and eigenvectors of H(ξ, 0) are

e1 = −1, w1 =
(

1
0

)

e2 = −1 + ξ, w2 =
(

0
1

)
(4)

These vectors are not longer eigenvectors of U, meaning a symmetry breaking. We
clearly appreciate that a slight change in ξ yields a dramatic change in the electron
density when RHZ is large enough (b small enough). For example, when ξ > 0 the
ground state is given by w1, whereas w2 is the eigenvector with the lowest eigenvalue
when ξ < 0. When ξ = 0 the ground states approaches to v1 as b → 0 as shown
above. The three cases describe a diatomic molecule with its ground-state electron
density distributed according to three quite different ways.

The Hückel model for the linear HZH(1e) molecule in a symmetric nuclear config-
uration is
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H(ξ, b) =
⎛
⎝−1 −b 0

−b −1 + ξ −b
0 −b −1

⎞
⎠ (5)

This Hamiltonian matrix is invariant with respect to the unitary transformation

U =
⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠ (6)

UH(ξ, b)U = H(ξ, b) (U† = U−1 = U). Its meaning is similar to the one discussed
above.

The eigenvalues ei and eigenvectors vi of H(0, b) are

e1 = −1 − √
2b, v1 = 1

2

⎛
⎝ 1√

2
1

⎞
⎠

e2 = −1, v2 = 1√
2

⎛
⎝ 1

0
−1

⎞
⎠

e3 = −1 + √
2b, v3 = 1

2

⎛
⎝ 1

−√
2

1

⎞
⎠ (7)

for all values of b. The vectors (7) are also eigenvectors of U and the symmetry is
unbroken for all b, including b → 0.

The eigenvectors of H(ξ, b) retain their symmetry as b → 0 ; therefore, the eigen-
values ei and eigenvectors wi of H(ξ, b → 0) are

e1 = −1, w1 = 1√
2

⎛
⎝ 1

0
1

⎞
⎠

e2 = −1, w2 = 1√
2

⎛
⎝ 1

0
−1

⎞
⎠

e3 = −1 + ξ, w3 =
⎛
⎝ 0

1
0

⎞
⎠ (8)

for all values of ξ , except ξ = 0 that was separately discussed above. These vectors
are also eigenvectors of U and the symmetry is unbroken. In this case, when b → 0 the
ground state is given by w1 when ξ > 0 (because of symmetry conservation), by v1
when ξ = 0 and by w3 when ξ < 0. Once again we appreciate that small changes in ξ
result in dramatic changes in the electron density when the side atoms are sufficiently
far away.
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Fig. 1 Electronic energy of the two states of the HZ(1e) molecule versus ξ for the Hückel model (left) and
versus Z for the actual system (right). RHZ = 8.5 Å; basis set STO-3G

The conclusions drawn from this extremely simple model clearly reveal that sym-
metry breaking or symmetry conservation are inherent to the effects of fractional
charges on the nuclei of the one-electron systems discussed in Ref. [17]. The Hückel
model mentioned above also describes other properties of the actual molecular sys-
tems that we discuss in the following. In order to calculate the energy of the molecules
we resorted to the FCI code calculations based on STO-3G orbitals available in Ref.
[19]. Both the Hückel model and the FCI one with a minimal basis set produce only
two states for HZ(1e) molecule and three states for the HZH(1e) one. For example,
Fig. 1 shows the energy of the two electronic states of HZ(1e) versus ξ and versus
Z for both the Hückel model and the actual system respectively, with b = 0.01 and
RHZ = 8.5 Å. Figure 2 shows the three levels of the HZH(1e) molecule calculated by
both computational levels with RHZ = 8.5 Å and b = 0.1. In order to compare the
electronic energies of the Hückel model with those of the actual system we arbitrarily
choose b = e−RHZ . Figures 3 and 4 show results for both treatments, for different
values of ξ and Z.

The analysis of the behavior of the electron density for two-electron systems
requires a careful consideration of the energy of the fragments into which the molecule
dissociates when bond lengths are stretched.

3 Energy analysis

The molecule HZ(1e) in the ground state dissociates into the fragments H− + Z+ or
H+ + Z− when Z < 1 or Z > 1, respectively. In other words, the dissociation process
always leads to the fragments with lowest energy and the electron density is localized
on H or Z, respectively. When Z = 1 there is identical probability of finding the
electron on each nucleus. Such a localization also takes place when the internuclear
distance RHZ is sufficiently large as discussed in Ref. [17]. On the other hand, the first
excited state yields fragments with higher energy and, therefore, its behavior is quite
the opposite, namely the electron density will be localized on H or Z when Z > 1 or
Z < 1, respectively.

In the study of the linear HHH(1e) molecule, we assume that the distance between
the side nuclei is sufficiently large (say 10 Å). If the central nucleus is slightly displaced
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Fig. 3 Electronic energy of the two states of the HZ(1e) molecule versus RHZ for the Hückel model (left)
and the actual system (right). Basis set STO-3G
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Fig. 4 Electronic energy of the three states of the HZH(1e) linear molecule versus RHH for the Hückel
model (left) and the actual system (right). Basis set STO-3G

to the left of the center of the nuclear configuration we can view the system as a diatom
HZ(1e) with an effective charge Z > 1 due to the perturbation by the positive charge
of the rightmost nucleus in the three-center molecule. It then follows from the above
discussion for the diatomic molecule that the electron density will be localized on
the central nucleus. Likewise, if the middle nucleus is slightly displaced to the right
of the center of the nuclear configuration we can apply the same above mentioned
reasoning for a diatomic molecule ZH(1e) with Z > 1. The electron density will again
be localized on the central nucleus. If that central nucleus is exactly in the middle then
the electron density is also expected to be localized on the central nucleus. We have
carried out a FCI calculation with a minimal basis set of STO-3G atomic orbitals and
their results have been collected in Fig. 5. As can be observed, these results confirms
what we have just discussed.

The linear HZH(1e) system with Z = 1.1 and a large distance between the leftmost
and rightmost nuclei has also been studied within this methodology. In this case we
expect the electron density to be localized on the central atom when it is at the middle
or slightly to the left or right of the nuclear configuration. This simple argument is
corroborated by the results reported in Fig. 6.

Let us now suppose that Z = 0.9 and the middle nucleus is slightly to the left of the
center of the nuclear configuration. Since the rightmost nucleus is quite far away, its
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Fig. 5 Electron density for the linear molecule HHH(1e). The left and right atoms are clamped at R1 = −5 Å
and R3 = 5 Å, respectively, while the central one is located at R2 = x = −3.5 Å (a), −2.0 Å (b), −0.5 Å
(c), 0.0 Å (d), 0.5 Å (e), 2.0 Å (f) and 3.5 Å (g)

effect on the middle nucleus is insufficient to overcome the 10 % difference between the
nuclear charges of the HZ fragment. According to the above analysis for the diatom we
conclude that the electron density will be localized on the leftmost atom. If the middle
atom is slightly to the right of the center then we can think of the system as a diatom
ZH with Z < 1. Obviously, in this case the electron density will be localized on the
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Fig. 6 Electron density for the molecule HZH(1e), Z = 1.1. The left and right atoms are clamped at
R1 = −5 Å and R3 = 5 Å, respectively, while the central one is located at R2 = x = −3.5 Å (a), −2.0 Å
(b), −0.5 Å (c), 0.0 Å (d), 0.5 Å (e), 2.0 Å (f) and 3.5 Å (g)

rightmost atom. We can view the whole process just described as an electron hopping
[17]. It is interesting to consider the symmetric nuclear configuration that has not yet
been explicitly discussed. Since the electronic ground state is symmetrical we expect
two electronic density maxima on the side nuclei because we can view the three-center
molecule as a diatom HZ or ZH on the left or right, respectively. The effect of the
remaining nucleus is insufficient to overcome the 10 % difference between the charges
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of the Z and H nuclei. However, the results shown in Fig. 7 are at variance with what
we have just mentioned. It shows that when the middle nucleus is exactly at the center
of the nuclear configuration the ground (d.1) and first-excited (d.2) states exhibit the
electron densities located on the right and left nuclei, respectively. Such an unexpected
outcome is due to numerical errors that strongly affect the results because those states
are almost degenerate. Therefore, the calculation process accidentally combines the
symmetric and antisymmetric wave functions and produces those localized electron
densities. This result clearly shows that in such cases it is judicious to impose the
correct symmetry on the basis set (which we obviously did not do). Some time ago
Davidson and Border [20] cautioned the researchers to properly take into consideration
the molecular symmetry in order to avoid completely wrong results. The present FCI
calculation is an example of it in the case of an extremely simple molecular system. In
this case the numerical errors produce a symmetry breaking and the electronic wave
function is no longer eigenfunction of the symmetry operators i and C2. If we move the
side nuclei sufficiently to the center, keeping the molecule symmetric, the gap between
the almost degenerate energy levels increases and the numerical errors do not break
the symmetry as shown in Fig. 8. We appreciate that the subfigure (d) now exhibits the
correct symmetry of the electron density for the symmetric nuclear configuration; that
is to say, the electronic wave function is eigenfunction of i and C2. Figure 8 shows an
interesting missing step in the electron-hopping process discussed in Ref. [17].

Let us now consider the first excited state of the linear HHH(1e) molecule when
the side atoms are quite far apart. If the middle nucleus is slightly displaced to the
left we can view this molecule as an HZ(1e) diatom with Z > 1. It follows from the
above given argument for the diatom that the electron density will be localized on the
leftmost H nucleus. If the middle nucleus is slightly displaced to the right then we have
a ZH(1e) diatom with the electron density on the rightmost H nucleus because Z > 1
as above argued. We appreciate that there is an electron hopping from the leftmost
nucleus to the rightmost one even when there are no fractional nuclear charges.

In the case of two-electron systems the analysis is slightly more complicated. Let us
consider the molecule HZ(2e) in the ground state that can dissociate along the following
three channels, H− + Z+, H + Z, or H+ + Z− with energies EHe(1), −1/2 − Z2/2 or
EHe(Z), respectively, where EHe(Z) is the energy of an Helium-like atom with nuclear
charge Z. We define two critical charges Zc and Z

′
c given by EHe(Zc) = −1/2 − Z2

c/2
and EHe(Z

′
c) = −Z

′2
c /2. If Zc <Z the molecule dissociates into H+ + Z−, if Z

′
c < Z <

Zc it dissociates into H + Z and if Z < Z
′
c < Zc it dissociates into H− + Z+ leading to

different electron densities for the diatomic molecule when the internuclear distance is
sufficiently large. The perturbation expansion for EHe(Z) calculated by Montgomery
[21] is useful to estimate both Z

′
c and Zc with sufficient accuracy. Present results

Z
′
c ≈ 0.912 and Zc ≈ 1.666340041 agree perfectly well with those estimated in Ref.

[17] by means of the simple Mulliken atomic population analysis.

4 Fractional charges from coordinate scaling

In this section we show that it is possible to obtain the electronic energy and electron
density for a one-electron system with fractional charges starting from the same prob-
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Fig. 7 Electron density for the molecule HZH(1e), Z = 0.9. The left and right atoms are clamped at
R1 = −5 Å and R3 = 5 Å, respectively, while the central one is located at R2 = x = −3.5 Å (a), −2.0 Å
(b), −0.5 Å (c), 0.0 Å (d.1 for the ground state), 0.0 Å (d.2 for the first-excited state), 0.5 Å (e), 2.0 Å (f)
and 3.5 Å (g)

lem with integer charges. As an example, consider the electronic Hamiltonian for the
three-center problem

Ĥe = −1

2
∇2 − Z1

r1
− Z2

r2
− Z3

r3
, (9)

where ri = |r − Ri | is the distance from the electron to the nucleus i clamped at Ri .
All the expressions in this section can be straightforwardly generalized to any number
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Fig. 8 Electron density for the molecule HZH(1e), Z = 0.9. The left and right atoms are clamped at
R1 = −4.125 Å and R3 = 4.125 Å, respectively, while the central one is located at R2 = x = −3.5 Å (a),
−2.0 Å (b), −0.5 Å (c), 0.0 Å (d), 0.5 Å (e), 2.0 Å (f) and 3.5 Å (g)

of nuclei. This three-center problem is sufficient for the present purposes because if
we choose Z3 = 0 we obtain the two-center one already discussed above. In what
follows we consider the case Z3 = Z1. The coordinate scaling

r = Lr′,∇2 = L−2∇′2, Ri = LR′
i , r ′

i = |r′ − R′
i |, (10)
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leads to

L2 Ĥe = −1

2
∇′2 − LZ1

r ′
1

− LZ2

r ′
2

− LZ1

r ′
3
. (11)

If we choose L = 1/Z we have

Z−2 Ĥe = −1

2
∇′2 − Z1/Z

r ′
1

− Z2/Z

r ′
2

− Z1/Z

r ′
3
. (12)

If ψe is an eigenfunction of Ĥe with eigenvalue Ee

Ĥeψe = Eeψe (13)

then Eq. (12) tells us that

Z−2 Ee(Z1,Z2,Z1,R1,R2,R3) = Ee(Z1/Z,Z2/Z,Z1/Z,ZR1,ZR2,ZR3). (14)

Obviously, from the calculation of Ee(Z1,Z2,Z1,R1,R2,R3) with integer charges
we can obtain Ee(Z1/Z,Z2/Z,Z1/Z,ZR1,ZR2,ZR3) with fractional ones, which
can be extended to electronic densities.

5 Concluding remarks

In this work, we have explained the nature of the strong changes in the electronic
density undergone by a system when fractional nuclear charges are introduced in
its electronic Hamiltonian. The simple Hückel model constitutes a suitable tool to
show that the symmetry breaking caused by the utilization of nuclei with fractional
charges is the origin of those effects. This conclusion is supported by the numerical
determinations performed within the Hückel framework which qualitatively turn out
to be similar to those arising from the exact FCI method. This methodology can
be applied to the description of any electronic state providing the prediction of its
dissociation products. Furthermore, we indicate that the formulation of electronic
Hamiltonians with atomic nuclei with factional charges can be applied to any system.
We are currently working in our laboratories on other applications of this formulation.
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